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The Latin Square Design

Last lesson:
randomized complete block design (RCBD) as a tool to reduce the residual er-
ror by removing variability due to a known and controllable nuisance variable.

Hint:
If the nuisance source of variability is known and controllable, use blocking
to eliminate its effect on the statistical comparisons among treatments.

Other types of designs that utilize the blocking principle:

I Latin square design;
I Graeco-Latin square design;
I Balanced Incomplete Block Designs.
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The Latin Square Design

The p × p Latin square for p factors, is a square containing p rows and p
columns:

I used to systematically take care of two nuisance sources of variability,
I systematically blocks in two directions,
I each cell contains one of the p letters that corresponds to the

treatments,
I each letter occurs once and only once in each row and column.
I For larger values, there are many Latin squares to choose between.
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The Latin Square Design

The p × p Latin square for p factors, is a square containing p rows and p
columns:

I A Standard Latin Square obtains the first row and column in
alphabetical order,

I A standard Latin square can always be obtained by writing the first row
in alphabetical order and then writing each successive row as the row of
letters just above shifted one place to the left,

I It is in the design that the Latin square differs from an ordinary block
model. The analysis is almost identical.

Notice: see the relation to a Sudoku puzzle.
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Number of Latin Squares
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The Latin Square Design - Example

I An experimenter is studying the effects of five different formulations of a
rocket propellant on the observed burn rate.

I Each formulation is mixed from a batch of raw material that is only large
enough for five formulations to be tested. And the formulations are
prepared by several operators.

I Each formulation once in each batch.
I Each operator uses each formulation once.

The Statistical model for a simple Latin square (ε ∼ N (0, σ2)):
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The Latin Square Design - ANOVA
ANOVA consists of partitioning the total sum of squares of the N = p2 obser-
vations into components for rows, columns, treatments, and error:

SSTotal = SSRows − SSColumns − SSTreatments − SSError

The analysis is a simple extension of the randomized complete block design.
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The Latin Square Design - Example
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The Latin Square Design - ANOVa of the Example

anova(lm(y~operator+batch+treat,rocket))
Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
operator 4 150 37.500 3.5156 0.040373 *
batch 4 68 17.000 1.5937 0.239059
treat 4 330 82.500 7.7344 0.002537 **
Residuals 12 128 10.667

There is
I a significant difference in the mean burning rate generated by the

different rocket propellant formulations.
I an indication that differences between operators exist.
I no strong evidence of a difference between batches of raw material.
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The Latin Square Design - ANOVa of the Example

anova(lm(y~operator+batch+treat,rocket))
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
operator 4 150 37.500 3.5156 0.040373 *
batch 4 68 17.000 1.5937 0.239059
treat 4 330 82.500 7.7344 0.002537 **
Residuals 12 128 10.667

anova(lm(y~operator+treat,rocket))
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
operator 4 150 37.50 3.0612 0.047378 *
treat 4 330 82.50 6.7347 0.002237 **
Residuals 16 196 12.25

In this particular experiment, blocking on operators factor was a good pre-
caution and we were unnecessarily concerned about the source of variability
caused by batches.
However, blocking on batches of raw material is usually a good idea.
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The Latin Square Design - Replication

Small Latin squares provide a relatively small number of error DF (3 × 3 has
only 2 and 4× 4 only 6) . It’s desirable to replicate them.

Replication can be done in several ways (use previous example with batches
and operators):

Case 1 use same batches and operators in each replicate;

Case 2 use same batches but different operators in each replicate
(or vice versa);

Case 3 use different batches and different operators.

The analysis of variance depends on the method of replication.
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Analysis of Variance for a Replicated Latin Square

Case 1: Using same batches and operators in each replicate;
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Analysis of Variance for a Replicated Latin Square

Case 2: Using new batches of raw material but the same operators in each
replicate.

Note that the source of variation for the rows really measures the variation
between rows within the n replicates.
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Analysis of Variance for a Replicated Latin Square

Case 3: Using new batches of raw material and new operators in each replicate.

Note that the variation resulting from both the rows and columns measures
the variation resulting from these factors within the replicates.
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The Greco-Latin Square Design

Consider one p × p Latin Square Design superimposed with another p × p
Latin Square Design in which the treatment are denoted by Greek letters:

I If each Greek letter appears once and only once with each Latin letter,
the two Latin squares are said to be orthogonal and called
Greaco-Latin square.

I The Greaco-Latin square design can be used to control systematically
three sources of extraneous variability (block in three dimension).
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The Greco-Latin Square Design
Greek latters appear exactly once in each row and column and exactly once
with each Lattin leter.

The analysis is similar to that of a Latin Square.

The null hypotheses of equal row, column, Latin letter, and Greek letter treat-
ments is tested by dividing the corresponding MS by MSE. The rejection region
is the upper tail point of the F(p−1)/(p−3)(p−1) distribution.

01NEX - Lecture 04 16



The Graeco-Latin Square Design - Example
Suppose that in the rocket propellant exp. test assemblies is important.

>rocket.lm<-lm(Propellant~operator+batch+treat+assembly)
>anova(rocket.lm)
Analysis of Variance Table:
Response: Propellant
Df Sum Sq Mean Sq F value Pr(>F)
operator 4 150 37.50 4.5455 0.032930 *
batch 4 68 17.00 2.0606 0.178311
treat 4 330 82.50 10.0000 0.003344 **
assembly 4 62 15.50 1.8788 0.207641
Residuals 8 66 8.25
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Balanced Incomplete Block Design

If we are not able to run all the treatment combinations in each block, we can
apply randomized incomplete block designs.

Balanced Incomplete Block Design (BIBD):
I all treatment comparisons are equally important,
I the treatment combinations in each block are selected in a balanced

manner,
I any pair of treatments occur together the same number of times as any

other pair.

Suppose that there are a treatments and that each block can hold exactly k
(k < a) treatments:

I a balanced incomplete block design may be constructed by taking
(a

k

)
blocks and assigning a different combination of treatments to each
block.
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Balanced Incomplete Block Design

Let us assume there are

a number of treatments,

b number of blocks,

k number of treatments in each block,

r number of replications of each treatments in the design

N number of observations, i.e. N = ar = bk ,

then the number of times each pair of treatments appears in the same block is

λ =
r(k − 1)

a− 1
.

The parameter λ must be an integer and if a = b, the design is called sym-
metric.
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BIBD - ANOVA
Total variability in the BIBD design can be partitioned into

SST = SSTreatments(adjusted) + SSBlock + SSE

where the sum of squares for treatments is adjusted to separate the treatment
and the block effects and it holds:

SSTreatments(adjusted) =
k
∑a

i=1 Q2
i

λa
=

k
∑a

i=1(yi· − 1
k

∑b
j=1 δijy·j)

λa
i = 1, . . . , a

with δij = 1 if treatment i appears in block j and δij = 0 otherwise.
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BIBD - Example

Suppose that a chemical engineer thinks that the time of reaction for a chemi-
cal process is a function of the type of catalyst employed.
The experimental procedure consists of selecting a batch of raw material, ap-
plying each catalyst in a separate run, and observing the reaction time.
It has been decided to use batches of raw material as blocks. However, each
batch is only large enough to permit three catalysts to be run.
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BIBD - Example
Consider the data for the catalyst experiment, a = 4, b = 4, k = 3, r = 4,
λ = 2, and N = 12.

SST =
∑

i

∑
j

y2
ij −

y..

12
= 63.156− 8702

12
= 81.00

SSBlocks =
1
3

4∑
j=1

y2
.j −

y..

12
=

2212 + 2072 + 2242 + 2182

3
− 8702

12
= 55.00

Q1 = 218− 1
3
(221 + 224 + 218) = −9

3

Q2 = 214− 1
3
(207 + 224 + 218) = −7

3

Q3 = 216− 1
3
(221 + 207 + 224) = −4

3

Q4 = 222− 1
3
(221 + 207 + 218) = +

20
3

SSTreatments(adj) =
k
∑a

i=1 Q2
i

λa
= 22.75

SSE = SST − SSTreatments(adjusted) − SSBlock = 3.25
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BIBD - Example
Consider the data for the catalyst experiment.

> anova(lm(rep~block+treat,Catalists.df))
Analysis of Variance Table
Response: rep
Df Sum Sq Mean Sq F value Pr(>F)
block 3 55.00 18.3333 28.205 0.001468 **
treat 3 22.75 7.5833 11.667 0.010739 *
Residuals 5 3.25 0.6500

Note: Block is unadjusted, to conclude something about blocks we need to
compute SSBlocks(adjusted) similar as for treatments.
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BIBD - Example
Difference between two ANOVA approaches. Error factor can be expressed
separately.

> summary(aov(rep~treat+block+Error(block),Catalists.df))
Error: block
Df Sum Sq Mean Sq
treat 3 55 18.33
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
treat 3 22.75 7.583 11.67 0.0107 *
Residuals 5 3.25 0.650

> summary(aov(rep~block+treat+Error(treat),Catalists.df))
Error: treat
Df Sum Sq Mean Sq
block 3 11.67 3.889
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
block 3 66.08 22.03 33.89 0.000953 ***
Residuals 5 3.25 0.65
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BIBD - Example

Difference between two ANOVA approaches. Depends which factor is on the
first position behind the symbol ∼.

> anova(lm(rep~block+treat,Catalists.df))
Analysis of Variance Table
Response: rep

Df Sum Sq Mean Sq F value Pr(>F)
block 3 55.00 18.3333 28.205 0.001468 **
treat 3 22.75 7.5833 11.667 0.010739 *
Residuals 5 3.25 0.6500

> anova(lm(rep~treat+block,Catalists.df))
Analysis of Variance Table
Response: rep
Df Sum Sq Mean Sq F value Pr(>F)
treat 3 11.667 3.8889 5.9829 0.0414634 *
block 3 66.083 22.0278 33.8889 0.0009528 ***
Residuals 5 3.250 0.6500
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BIBD - Example

A multiple comparison analysis, using the Tukey method. Confidence intervals
on the differences in all pairs of means are displayed.

Notice that the Tukey method would lead us to conclude that catalyst 4 is
different from the other three.

We can’t use straightly classical TukeyHSD R function that is designed for
RCBD only.
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Today Exercise (1)

Problem 4.23 from the chapter 4, D. C. Montgomery DAoE - 8. edition.

An industrial engineer is investigating the effect of four assembly methods
(A, B, C, D) on the assembly time for a color television component. Four
operators are selected for the study. Furthermore, the engineer knows that
each assembly method produces such fatigue that the time required for the
last assembly may be greater than the time required for the first, regardless
of the method. That is, a trend develops in the required assembly time. To
account for this source of variability, the engineer uses the Latin square design
shown below. Analyze the data from this experiment (use α = 0.05) and draw
appropriate conclusions.

Operator
Order 1 2 3 4

1 C = 10 D = 14 A = 7 B = 8
2 B = 7 C = 18 D = 11 A = 8
3 A = 5 B = 10 C = 11 D = 9
4 D = 10 A = 10 B = 12 C= 14
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Today Exercise (2)

Problem 4.40 from the chapter 4, D. C. Montgomery DAoE - 8. edition.

An engineer is studying the mileage performance characteristics of five types
of gasoline additives. In the road test he wishes to use cars as blocks; how-
ever, because of a time constraint, he must use an incomplete block design.
He runs the balanced design with the five blocks that follow. Analyze the data
from this experiment (use α = 0.05) and draw conclusions.

Car
Additive 1 2 3 4 5

1 17 14 13 12
2 14 14 13 10
3 12 13 12 9
4 13 11 11 12
5 11 12 10 8
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Today Exercise (3)

Problem 4.42 from the chapter 4, D. C. Montgomery DAoE - 8. edition.

Seven different hardwood concentrations are being studied to determine their
effect on the strength of the paper produced. However, the pilot plant can
only produce three runs each day. As days may differ, the analyst uses the
balanced incomplete block design that follows. Analyze the data from this
experiment (use α = 0.05) and draw conclusions.

Days
Concentration (%) 1 2 3 4 5 6 7

2 114 120 117
4 126 120 119
6 137 117 134
8 141 129 149

10 145 150 143
12 120 118 123
14 136 130 127

Try to run, in addition to ANOVA with BIBD, the linear model with concentration
as a quantitative response too (on condition there is no day effect).
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